

A New Colorimetric Test for FeNa-EDTA in Flour

FFI Workshop Dakar, Senegal December 9, 2008

Dr. Carel Wreesmann

Akzo Nobel Functional Chemicals carel.wreesmann@akzonobel.com +31 6 22 49 69 20

Recommended Fe Fortification Levels

WHO 2009: Recommendations on Wheat and Maize Flour Fortification Meeting Report: Interim Consensus Statement

http://www.who.int/nutrition/publications/micronutrients/wheat_maize_fort.pdf

Type of flour	Fortificant	Average daily consumption in g/d		
		> 300	150 – 300	< 150
LOW-extraction	FeNa-EDTA	15	20	40
	Ferrous sulfate or Ferrous fumarate	20	30	60
	Electrolytic iron	40	60	not recommended
HIGH-extraction	FeNa-EDTA	15	20	40

Intrinsic Fe Content in Flours

High-extraction wheat flour average: ~ 30 ppm

range: 10 – 100 ppm (?)

Low-extraction wheat flour average: ~ 10 ppm range: 5 – 50 ppm (?)

Fe content may vary considerably from batch to batch and even within batches!

Total Fe Content

Determination

dissolution of the flour in HNO_3/H_2O_2 ultrahigh temperature in microwave all insoluble parts \rightarrow fully soluble \rightarrow clear solution injection into the flame of AAX / ICP

Total [Fe] can vary from 20 – 160 ppm [Fe] from fortification: 15 – 60 ppm depending on iron compound and consumption level [Fe] of intrinsic origin: 5 – 100 ppm

Total Fe Content

Determination

dissolution of the flour in HNO_3/H_2O_2 ultrahigh temperature in microwave all insoluble parts \rightarrow fully soluble \rightarrow clear solution injection into the flame of AAX / ICP

Total [Fe] can vary from 20 – 160 ppm [Fe] from fortification: 15 – 60 ppm depending on iron compound and consumption level [Fe] of intrinsic origin: 5 – 100 ppm

Total Fe Content

Determination

dissolution of the flour in HNO_3/H_2O_2 ultrahigh temperature in microwave all insoluble parts \rightarrow fully soluble \rightarrow clear solution injection into the flame of AAX / ICP

Total [Fe] can vary from 20 – 160 ppm [Fe] from fortification: 15 – 60 ppm depending on iron compound and consumption level [Fe] of intrinsic origin: 5 – 100 ppm

Intrinsic vs. Fortification Fe?

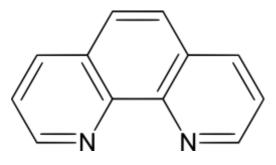
How to differentiate intrinsic vs. fortification Fe? both types fully dissolve

Suppose: AAS/ICP → 40 ppm Fe 10 ppm from fortification, 30 ppm intrinsic? or the other way round? or 20 ppm + 20 ppm?

Type of fortificant (bio-availability) is critically important

Total Fe content (AAS/ICP) is not suitable

Other Methods for Flour


Red Spot Test

directly on the flour as such only for elemental iron types

Extraction of flour + colorimetric determination flour is extracted with water/methanol → suspension flour is separated from water layer coloring agents are added to filtrate solution

Phenanthroline (orange color) method

Determination of [Fe] in Water

Phenanthroline (Phen) also: ortho-phenanthroline

Gives a highly intense, orange color with ferrous ions Fe²⁺ + 3 Phen → {Fe(Phen)₃}²⁺ Ferric ions should be reduced first (e.g. by ascorbic acid) Fe³⁺ → Fe²⁺

Analytical method already known from 1930's Widely-used for [Fe] determination in water

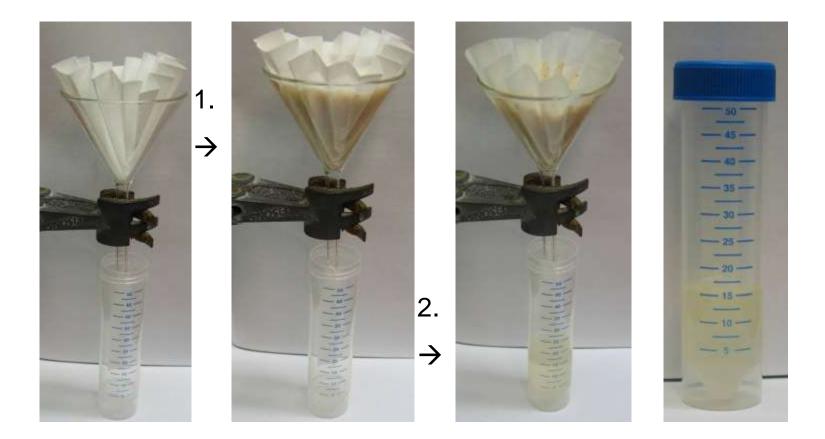
Semi-Quantitative Procedure (DEMO)

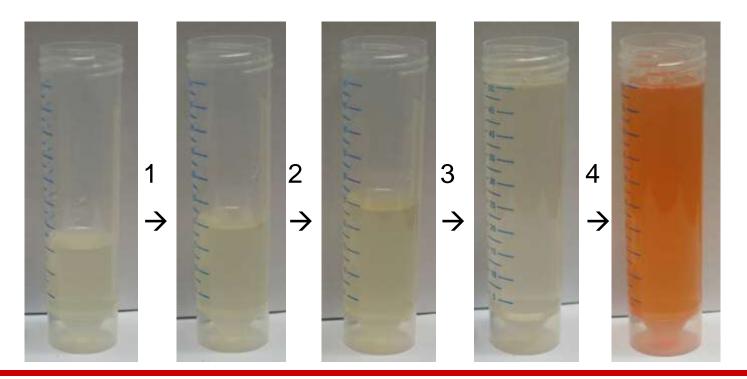
Mix 10 g of flour with 30 mL of water/methanol (80/20) shake vigorously during 1 minute Separate water from flour over paper filter (~ 15 minutes)


Transfer 15 mL to 50-mL volumetric flask Add the following reagents 5 mL vitamin C solution (1 g/L) 5 mL phenanthroline solution (1 g/L) Fill up to 50-mL mark with water Wait for 10 minutes

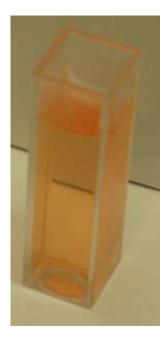
Assess color intensity by visual inspection with calibration samples

Mix with Water/Methanol

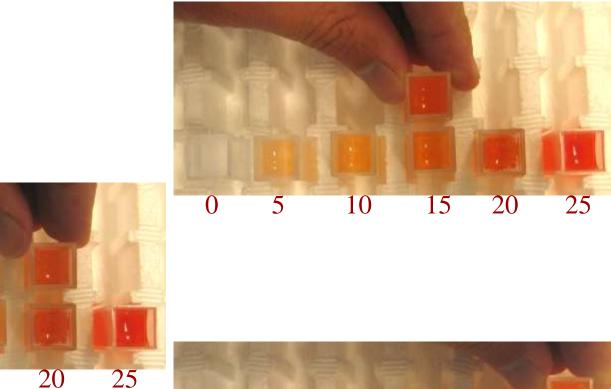

Transfer 10 g of fortified flour into a 50-mL test tube Add 30 mL water/methanol (80/20) and mix thoroughly to suspend all flour Shake resulting suspension vigorously for 1 minute

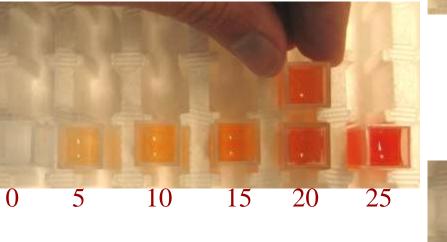

Filter Solution

- 1. Separate water from flour through a folded paper filter
- 2. Collect 15 mL filtrate in a 50-mL test tube



Add Reagents


- 1. 5.0 ml of vitamin C solution (1 g/L)
- 2. 5.0 ml of phenanthroline solution (1 g/L)
- 3. Fill up to 50 mL and mix
- 4. After 10 minutes the color reaction has completed



Transfer to Cuvette

and Compare Visually

Other Iron Fortificants

In flour

Fe as Ferrazone: can be determined reliably (2 - 30 ppm)Fe as *dried* FeSO₄: is NOT detected Fe as ferrous fumarate: is not detected either Fe as electrolytic iron: does not dissolve in water

Conclusion: phenanthroline method is suitable for discriminating Ferrazone vs. other (recommended) iron fortificants in wheat flour

Current Applications FeNa-EDTA

China: soy sauce, wheat flour

Vietnam: fish sauce

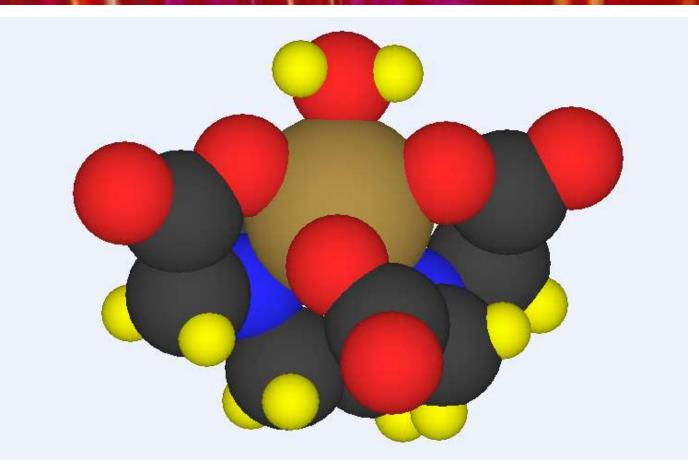
Pakistan: atta flour

Brazil, Mexico, Philippines, ... powdered beverage

Regulatory Status FeNa-EDTA

JECFA (2007)

Sodium iron EDTA is suitable for use as a source of iron for food fortification to fulfill nutritional iron requirements ...


US FDA Gras Notices GRN 152 and 178

EU EFSA Dossier submitted, final statement pending

India Approved for atta flour and drinks by PFA

Approval also in Brazil, China, Mexico, Pakistan, Philippines, Vietnam, ... No formal approval yet in African countries

3-Dimensional Model FeNa-EDTA

Ferric-EDTA monohydrate complex-ion Wageningen University 2007

Ferrazone[®]. This Iron Works.

A Colorimetric Test for FeNa-EDTA in Flour

Thank You for Your Attention

Dr. Carel Wreesmann

Akzo Nobel Functional Chemicals carel.wreesmann@akzonobel-chemicals.com +31 6 22 49 69 20