

East Central and Southern African Health Community (ECSA-HC)

Consumption considerations in formulating existing standards: ECSA example

Carol Tom A2Z Project/ECSA-HC

Setting the Goals of a Mass FF programme

- Step 1: Selecting the Proper Food Vehicle for Mass Fortification
- Step 2: Defining the Dietary Objectives
- Step 3: Finding the Appropriate Combination of the Food Vehicles
- Step 4: Estimating Usual Intakes of the Fortification Vehicles

Step 5: Determining the Feasible Fortification Levels (FFL)

FFI-CT-20042010

Setting the Goals of a Mass FF programme cont'd

Step 6: Defining the Acceptable Allowable Cost

- Step 7: Assessing the Nutritional Impact and Selecting the Levels of Addition
- Step 8: Estimating the Production Parameters
- Step 9: Calculating the Regulatory Parameters

Step 10: Formulating the Premix

FFI-CT-20042010

Setting the Goals of a Mass FF programme

Step 1: Selecting the Proper Food Vehicle for Mass Fortification

Step 2: Defining the Dietary Objectives

Step 3: Finding the Appropriate Combination of the Food Vehicles

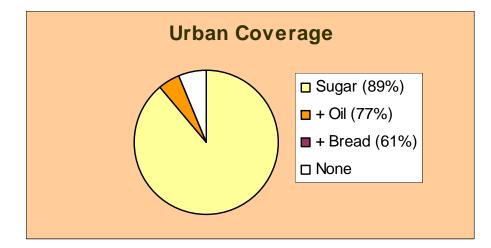
Step 4: Estimating Usual Intakes of the Fortification Vehicles

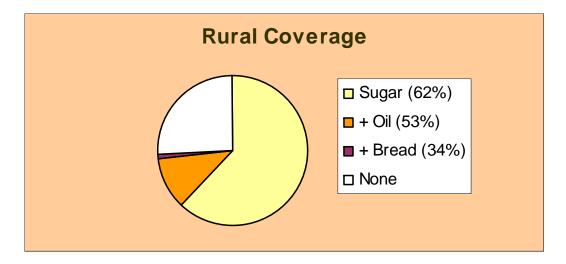
Step 5: Determining the Feasible Fortification Levels (FFL)

FFI-CT-20042010

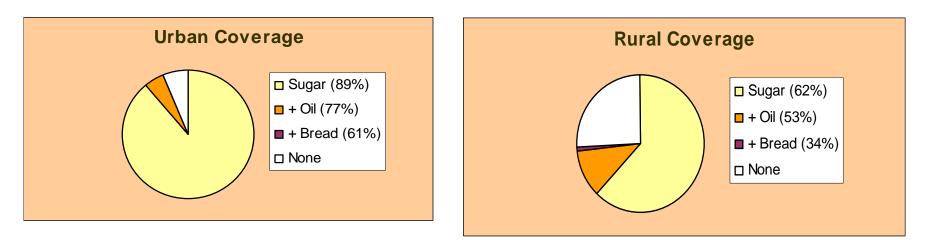
Estimating Consumption Patterns

- Ideally, need to determine consumption profile of the fortification vehicles for each of the age and gender groups as well as for geographical and socioeconomical groups
- Sources of data:
 - Food consumption and dietary intake surveys
 - Household Income Expenditure Surveys (HIES) or Household Budget/ary Surveys
- FC ECSA-HC
- Food Balance Sheets

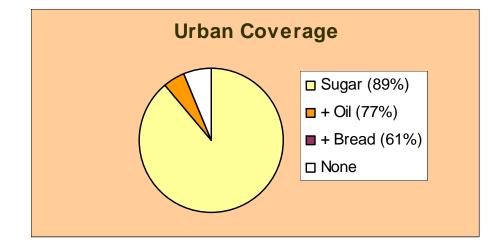

Consumption of Industrial Staples in the ECSA Countries

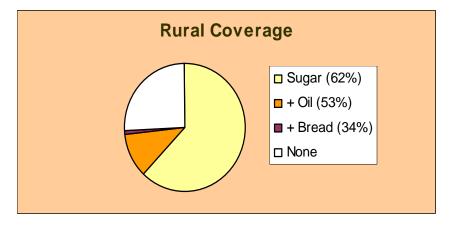

Food	% Population	Usual Intake (g/day)
Sugar	<u>60 – 95%</u>	10 – 80
Oil	50 – 80%	4 – 25 mL
Wheat Flour	10 – 80%	25 - 270
Maize Flour	1 – 70%	35 - 350

We tried to estimate coverage- HIES 2006


Example of Uganda

We tried to estimate coverage- HIES 2006


Example of Uganda



Is vitamin A needed in wheat flour?

We tried to estimate coverage- HIES 2006

Example of Uganda

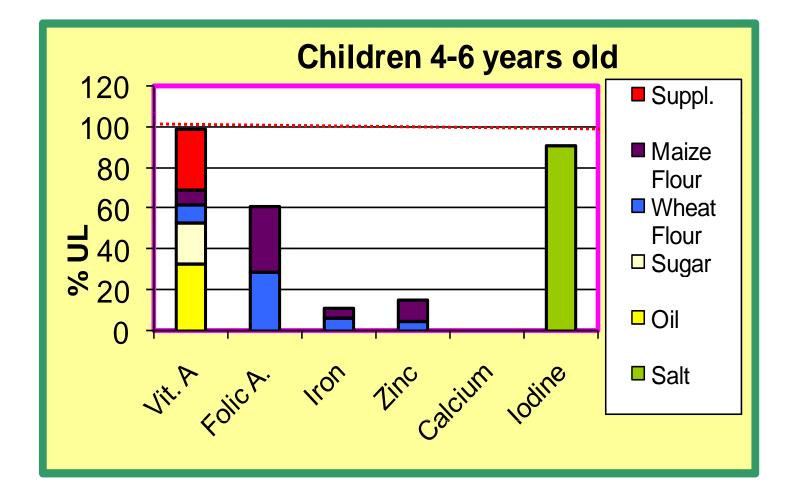
Yes, if sugar is not fortified, and mainly for those countries where wheat flour intake is high and extended (Tanzania, e.g.) Is vitamin A needed in wheat flour? We used the best reference in Food Fortification, even before it was published.

"Food fortification is the practice of deliberately increasing the content of essential micronutrients in a food so as to improve the nutritional quality of the food supply and to provide a public health benefit with minimal risk to health."

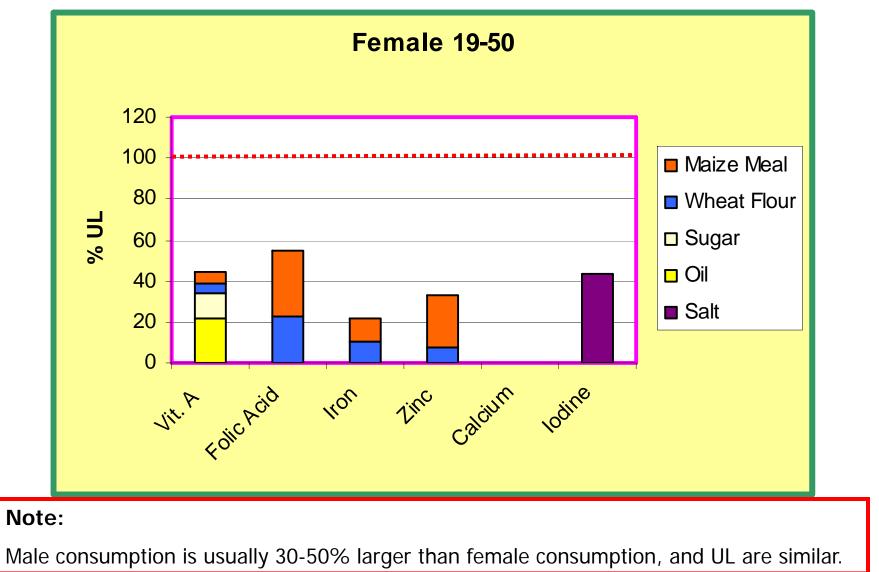
WHO/FAO Guidelines on Food Fortification, 2006

In developing Standards, we made important considerations:

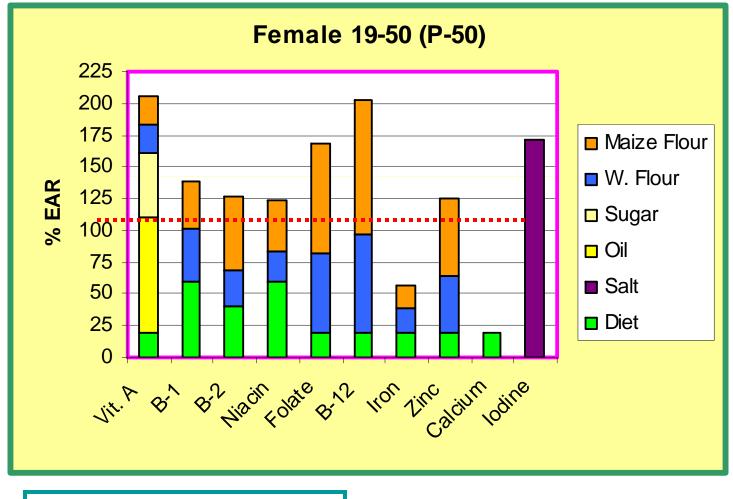
Diet + Intervention < UL for most individuals


Criteria of Safety

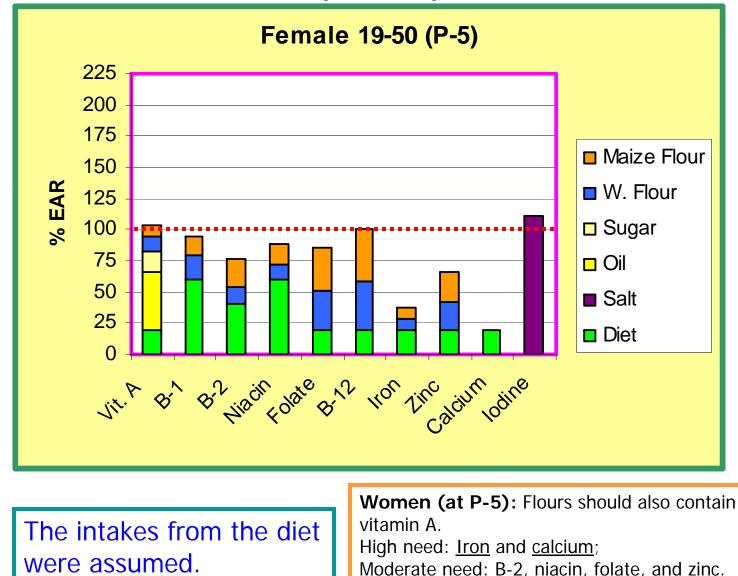
Diet + Intervention > EAR for most individuals

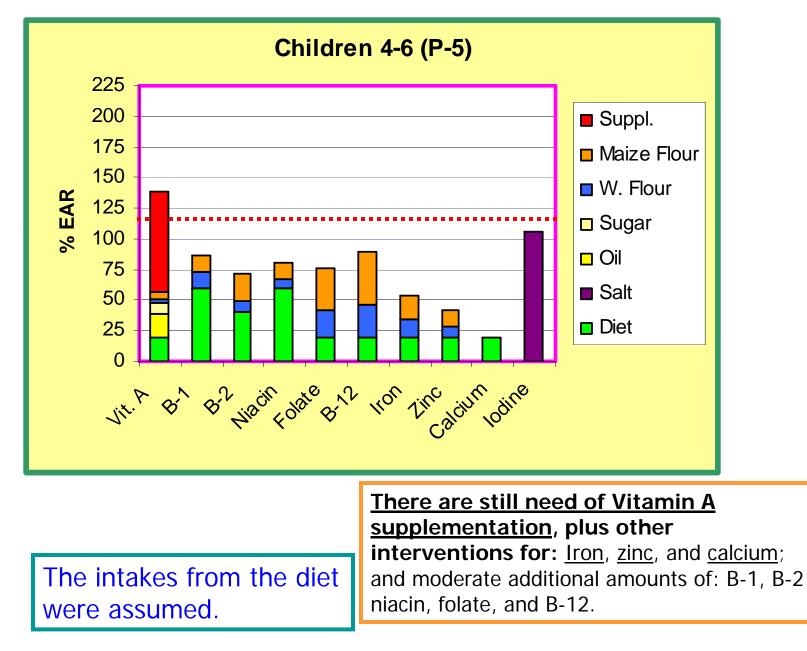

Criteria of Need

PROGRAM: \sum fortified foods + supplements + others


Safety: We estimated the potential UL for the most vulnerable groups at P-95

Safety: The Highest Supply (P-95) of Micronutrients in the ECSA Countries


We estimated the potential benefit: the Median Supply of Micronutrients in the ECSA Countries


The intakes from the diet were assumed.

Non satisfied need: Iron and calcium.

We estimated the benefit in those with the lowest consumption pattern (P 5)

And the potential benefit in small children at P-5.

Developed Guidelines on fortification levels (2007)

Vehicle	Nutrient / fortificant	Average Addition	Factory Level	Regulatory level (mg/kg)	
	compound	(mg/kg)	(mg/kg)	Min	Max
Salt	Potassium Iodate	40	40±15	20	60
Oil	Vit. A (oily)	30	30 ± 15	15	45
Sugar	Vit A (water disp)	10	10 ± 5	2	15
Maize flour*	Vit A and Iron (added; NaFeEDTA)	0.5 10	0.5±0.2 10±5	0.2 5	1 15
Wheat flour *	Vit A and Iron (added; Fumarate)	2 40	2±1 40±10	0.5 30	3 50

*Plus zinc, and vitamins of the complex B.

Estimated costs of fortification of wheat flour

Nutrient	Content (mg/kg)	Cost (\$/MT)	% EAR*	Nutrient	Content (mg/kg)	Cost (\$/MT)	% EAR*
	0.045	0.00	200/	Vit.A	3.0	1.60	33%
Vit.B-12	0.015	0.63	32%	Iron	40.0	0.76	8%
Folate	3.0	0.65	66%	(Fumarate)	40.0	0.70	070
	0.0	0.00	0070	Iron			
Vit.B-1	13.0	0.39	48%	(NaFeEDTA)	40.0	2.00	15%
Vit.B-2	7.0	0.27	32%	Zinc	50.0	0.42	31%
				(ZnO)	00.0	0.12	
Niacin	90.0	1.05	36%	Other expenses	-	2.30**	-

* For women of reproductive age with a daily flour intake of 50 g/day, and assuming a diet with low bioavailability for minerals.

** Total: \$8/MT; premix: \$ 14.50/kg for using 500 g/MT; \$0.15/year per person; if fumarate is replaced for NaFeEDTA, then: Total cost \$10/MT; premix \$12.75/kg*** for using 700 g/MT; \$0.18/year per person. *** less costly, because more diluted.

Conclusions

- Principles of science are universal, solutions are local. Assessment of the nutrient intakes has been done in some countries and results should be used to review standards.
- 2. Impact of food fortification is due to correction of inadequate micronutrient intakes, and not to the simple consumption of the fortified foods.
- 3. Epidemiological impact is a function of the extension of the coverage of the fortified food and the magnitude of the additional intake (amount consumed x fortification level), both of which may be limited.
- 4. M&E should be a key component of FF program to continuously generate data, alongside the science to review programs.